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1. INTRODUCTION 

The chemical simplicity of hydrocyanic acid (HCN) and its multimers makes them attractive 

candidates for experimental and theoretical study. Due to its extreme toxicity, HCN must be handled with 

caution. Additionally, HCN is reported to be unstable upon storage with the possibility of explosion due 

to polymerization, presumably in forming 1,3,5-triazine (C3N3H3), also known as sym-triazine 

(Migrdichian 1947). To explore the possibility of high-energy release in the formation of sym-triazine 

from HCN, more information is needed on the reaction mechanism and barrier height to formation. 

Unfortunately, very little is known about the potential energy surface (PES) for the polymerization of HCN 

to sym-triazine. There have been experimental studies on the reverse reaction, the decomposition of 

sym-triazine to form HCN (Ondrey and Bersohn 1984; Goates, Chu, and Hynn 1984). 

sym-triazine -> 3 HCN     AH = 43.2 kcal/mol (I) 

Photodissociation experiments at 248 and 193 nm showed that .sym-triazine decomposes in a concerted 

manner only and forms three HCN molecules (Ondrey and Bersohn 1984). These measurements provided 

an upper bound of the barrier to reaction (I) (115 kcal/mol). The results also indicate that the transition 

state for reaction (I) has three-fold symmetry. Evidence of a step-wise decomposition reaction, 

sym-triazine -» H2C2N2 + HCN -» 3 HCN, (II) 

was not observed. In the 248-nm experiments, the energy measured in the product translational and 

internal modes is consistent with an equipartitioning of the available product energy. The 193-nm 

experiments, however, showed a nonstatistical product energy distribution with 99% of the available 

product energy partitioned into the internal modes of the HCN products (Ondrey and Bersohn 1984). A 

time-resolved infrared fluorescence study of the HCN formed from 193-nm photolysis of sym-triazine 

showed that the HCN bending vibrations are excited preferentially, with "no evidence of a hot rotational 

population" (Goates, Chu, and Flynn 1984). A simple harmonic oscillator analysis of the products 

indicates that the bending quanta of HCN formed from photolysis of sym-triazine at 193 nm is 70 times 

larger than the number of C-H stretching quanta (Goates, Chu, and Hynn 1984). 

The anomalous difference in the product energy distributions for the 248- and 193-nm 

photodissociation experiments was attributed to transitions to different excited states that subsequently 
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cross to the ground state potential energy surface at different regions of configuration space (Migrdichian 

1947). The geometric structures, levels, and types of vibrational excitation in the ground-state molecule 

are dependent on the region of configuration space at which the crossings occur. If the transition results 

in a vibrationally excited and highly distorted ground-state molecule that reacts before vibrational or 

structural relaxation occurs, a nonstatistical partitioning of energy could result in the product molecules. 

This could explain the differences in product energy distributions for the two photolysis energies (Ondrey 

and Bersohn 1984). 

The experiments clearly show that decomposition occurs in a conceited manner under 193- and 

248-nm photolysis (Ondrey and Bersohn 1984; Goates, Chu, and Flynn 1984). Concerted triple 

dissociation reactions are uncommon, but not unknown. There are at least two other cyclic molecular 

systems that have also been shown to decompose through a concerted triple dissociation mechanism, 

s-tetrazine (King et al 1977; Zhao et al. 1989) and 2,4,6-hexahydro-l,3,5-trinitro-l,3,5-triazine (Zhao, 

Hintsa, and Lee 1988). 

Concerted triple association of three HCN molecules to form syro-triazine seems more improbable than 

the reverse reaction, the concerted triple dissociation in reaction (I). In a triple association reaction, 

entropic effects associated with bringing three HCN molecules together in a concerted fashion, especially 

in the gas phase, would seem so large as to prohibit reaction. However, entropic hindrance to association 

would be reduced if a prereaction intermediate with a structure favorable to concerted triple association 

could be easily formed. Experiment shows that such a species exists (Jucks and Miller 1988). It is a 

cyclic hydrogen-bonded cluster (HCN>j. Rotationally resolved spectra of the infrared active doubly 

degenerate C-H stretch for the trimer cluster is consistent with an oblate planar symmetric top (Jucks and 

Miller 1988). Unfortunately, the experimental results could not provide details of this cyclic structure. 

Subsequent ab initio calculations on hydrogen-bonded (HCN)3 clusters confirmed that the cyclic cluster 

exists in conjunction with linear HCN trimer chains (Kurnig, Lischka, and Karpfen 1990). Zero-point 

corrected relative energies of the two clusters differ by only 0.5 kcal/mol (Kurnig, Lischka, and Karpfen 

1990). It is conceivable that HCN gas, under containment, would form clusters, including the 

hydrogen-bonded cyclic trimer. The HCN molecules, weakly bound in such a cyclic cluster, would then 

be in a sterically favorable arrangement for a concerted association: 

3 HCN -> (HCN)3 -» aym-triazine. (Ill) 

Reaction energy appropriately imparted to the cluster would allow reaction (III) to occur. 



The focus of this study is to investigate reaction mechanisms and energetics for the decomposition and 

formation of sym-triazine [reactions (IHffl)]. We also investigate vibrational coupling of .sym-triazine 

and the (HCN)3 cluster with the reaction coordinate for reactions (I) and (III). Our results also examine 

basis set dependence for the calculations, as well as effects of increased electron correlation. 

2. METHODS 

All calculations reported in this work were done using the Gaussian 94 set of programs (Frisch et al. 

1995). Critical points on the jym-triazine potential energy surface corresponding to reactions (IMIII) were 

determined through MP2 geometry optimizations and characterized through normal mode analyses using 

the 6-31G** (Hehre, Ditchüeld, and Pople 1972; Hariharan and Pople 1973; Gordon 1980), 6-311++G** 

(McLean and Chandler 1980; Krishnan et al. 1980), and cc-pVTZ (Woon and Dunning 1993; Kendall, 

Dunning, and Harrison 1972; Dunning 1989) basis sets. QCISD(T) energy refinements were calculated 

for each MP2-optimized structure with its corresponding basis set. All calculations were run with frozen 

core orbitals, and the geometry optimizations met the default convergence criteria given by Frisch et al. 

(1995). Intrinsic reaction coordinate (IRQ calculations were performed at the MP2/6-31G** level. The 

IRC calculation leading from the transition state structure of reaction (I) towards isolated HCN confirmed 

that this transition state is also the saddle point for reaction (III). All IRC calculations proceeded to 

minima as determined by the default convergence criteria in Frisch et al. (1995). Saddle points for 

reaction (II) were not determined for reasons discussed as follows. 

3. RESULTS AND DISCUSSION 

Molecular structures for yy/n-triazine, the dimer I^Cy^, the cyclic (HCN)3 cluster, the HCN 

molecule, and the transition state for reactions (I) and (III) are shown in Figure 1. Subsequent normal 

mode analyses characterized each species. The molecular properties are shown in Table 1. The atom 

labels in Table 1 are consistent with the structures shown in Figure 1, and the internal coordinates used 

in our discussion are shown in the transition state structure in Figure 1(b). Although the atoms are not 

labeled on the transition state structure in Figure 1(b), the labeling of the atoms follows the same pattern 

around the ring as in Figure 1(a). The internal coordinates shown in Figure 1(b) will be discussed next 

and are the same for all structures illustrated in Figure 1. 



"     NCN 

HCN 

N2 

► 

N2 

Cl 

H9 

(d) 
Cl        H9 

(e) 

Figure 1. Structures of (a) yy/w-triazine; (b) transition state for the concerted triple dissociation and 
association reactions freactions (I) and (111)1; (c) the stable dimer species H3C3N2 associated 
with the stepwise dissociation mechanism freaction (11)1; (d) HCN; and (e) the hydrogen-bonded 
(HCN)3 cluster located on the concerted triple association/dissociation path. 
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3.1 Geometries. AU calculated structural parameters of syro-triazine are within 1% of the 

experimental values, showing very little variation with the size of the basis set. The HCN geometries are 

in good agreement with experiment for all the basis sets, with the errors ranging from <2% (6-31G**) to 

<1% (cc-pVTZ). The structure of the (HCN)3 cluster has not been determined experimentally, although 

Jucks and Miller (1988) suggest two structures that are consistent with the rotational constants determined 

from the rovibrational spectrum of the C-H asymmetric stretch. The intermolecular C-C distances for the 

two structures suggested by Jucks and Miller are 3.62 and 3.83 A, respectively. The C-C intemuclear 

distances of the (HCN)3 clusters calculated using the 6-31G**, 6-311++G**, and cc-pVTZ basis sets are 

3.63,3.66, and 3.60 A, respectively. These distances are consistent with those of Structure A in Figure 5 

of Jucks and Miller (1988). Ab initio calculations using the average coupled pair approximation (ACPF) 

method and extended basis sets (Kumig, Lischka, and Karpfen 1990) predicted the cyclic turner with N-H 

intermolecular distances of 2.5532 A. Comparison of our results with the ACPF calculations is shown 

in Table 1. The structures from the two methods are similar. The cyclic cluster, illustrated in Figure 1(e), 

consists of three linear HCN molecules with H-N distances of 2.5 A. 

Structures and energies along the reaction coordinate determined from MP2/6-31G** IRC calculations 

are shown in Figure 2. The structures along the reaction path have three-fold symmetry. Because of this, 

there are six unique internal coordinates that describe the geometric changes along the reaction path and 

are defined in Figure 1(b). These unique internal coordinates include two types of C-N bonds: one that 

becomes intermolecular in the (HCN^ cluster (denoted CN2), and one that remains an intramolecular bond 

along the reaction path (denoted CN1). The C-H distances and HCN, NCN, and CNC angles make up 

the rest of the six internal coordinates. Changes of these internal coordinates along the reaction path are 

shown in Figure 3. Negative values of the reaction coordinate correspond to the (HCN)3 cluster region 

of the PES, and positive values along the reaction coordinate correspond to the sym-triazine region of the 

PES. The reaction path coordinate value 0.0 corresponds to the transition state connecting the (HCN>3 

cluster and .sym-triazine minima. The internal coordinates that change the most along this reaction path 

are the CN2 bond length and the HCN angle. The CN2 bond increases almost linearly as the sym-triazine 

dissociation progresses to the (HCN)3 cluster. The other CN bond type, CN1, becomes shorter as 

iym-triazine decomposes, and almost equals the equilibrium CN bond distance in the (HCN)3 cluster and 

isolated HCN by the time it reaches the saddle point. The CN1 bond distance changes only slightly as 

the (HCN)3 minimum is approached after crossing the saddle point. The C-H bond distances do not 

change significantly during the reaction. The HCN angle increases almost monotonically as the (HCN^ 



1/9 
REACTION COORDINATE (amu     -bohr) 

Figure 2. MP2/6-31G** reaction path from the IRC calculation for reactions (I) and (III). Every tenth 
point of the IRC is shown. In addition to the stable and transition state structures, three other 
structures along the reaction path have been shown to enable the reader to visualize the 
mechanism of concerted triple association and dissociatioa The (HCN)3 is illustrated in the 
far-left structure of the figure. The yym-triazine molecule is represented by the far-right 
structure of the figure. 
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cluster is approached. This angle varies from 117° in sym-triazine to 139° at the transition state. It 

continues to open up to 180° in the (HCN)3 cluster region. The ring angles, NCN and CNC, do not show 

monotonic behavior. The NCN angle first decreases after crossing the transition state and then opens up 

rapidly as the molecule approaches the cluster minimum. The changes in the CNC angle along the 

reaction path behave in an almost equal but opposite manner to the changes in the NCN angles. 

Attempts were made to locate transition states leading to dimer formation and decomposition and 

stable structures starting from various dimer configurations. The only structure located corresponds to a 

local minimum on the PES. Its structure is that of a parallelogram of the heavy atoms with internal angles 

for CNC and NCN of 100° and 79°, respectively [Figure 1(c)]. The HCN angles are far from linear in 

this structure (see Table 1). 

3.2 Frequencies. MP2 harmonic vibrational frequencies of the critical points described previously 

were calculated using the aforementioned basis sets and are shown in Table 1. MP2/cc-pVTZ eigenvectors 

and corresponding harmonic frequencies of all critical points (except HCN) for reactions (I) and (III) are 

shown in Figures 4-6. The predicted frequencies of HCN agree with experiment to within 7% for all 

basis sets. Predictions of iym-triazine frequencies are within 7.5% of experimental values for all basis 

sets. There is only one vibration that has been measured and assigned for the (HCN)3 cluster. It 

corresponds to the doubly degenerate C-H asymmetric stretch at 3274 cm-1 and contains rotationally 

resolved bands (Jucks and Miller 1988). Our value at 3438 cm-1 is 5% higher than the experimental 

value. Jucks and Miller provide rotational constants A"=B"=2C=0.0822 cm-1 determined from fits to 

the rotational transitions for a planar oblate symmetric top (Jucks and Miller 1988). Our calculated values 

using the 6-31G**, 6-311++G**, and cc-pVTZ basis sets are 0.0827, 0.0821, and 0.0840 cm-1, 

respectively. 

Lancaster, Stamm, and Colthup (1961) reported the infrared and Raman spectra for 5y/n-triazine and 

made band assignments based upon a normal coordinate analysis. Using the description of the modes 

given by Lancaster, Stamm, and Colthup, we were able to match all vibrational modes to experimental 

assignments except for the experimental modes v4 (1617 cm-1), v8 (1410 cm-1), and v9 (1174 cm-1). 

Lancaster, Stamm, and Colthup predicted doubly degenerate modes v8 and v9 should correspond to ring 

and C-H rocking vibrations, respectively. If we assume that the MP2/cc-pVTZ modes with frequency 

1449 cm-1 can be assigned to experimental v8 and the modes with frequency 1199 cm-1 to experimental 
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v9, then the ab initio predictions agree with experiment to within 3%. Visual inspection of the 

MP2/cc-pVTZ eigenvectors corresponding to ab initio frequencies 1449 and 1199 cm-1 indicate that these 

two sets of degenerate vibrations cannot be distinctly classified as C-H rocks or ring vibrations. The 

remaining ab initio eigenvector that we could not assign to anything else (1405 cm-1) was assigned to 

experimental mode v4 with 13% disagreement However, mode v4 is one of the two A'2 fundamentals 

that are inactive and were not observed (Jucks and Miller 1988). The frequency for this fundamental that 

was reported by Lancaster, Stamm, and Colthup (1961) was calculated from estimated force constants and 

considered "very approximate." 

The zero-point energies for sym-triazine with the 6-3IG**, 6-311++G**, and the cc-pVTZ basis sets 

are 41.6,40.9, and 41.2 kcal/mol, respectively, and compare well with experimental zero-point energy of 

40.5 kcal/mol (Lancaster, Stamm, and Colthup 1961). The HCN zero-point energies for the three basis 

sets (ranging from 9.9 to 10.0 kcal/mol) agree well with the experimental value (9.8 kcal/mol) (Herzberg 

1945; Huber and Herzberg 1979). 

3.3 Vibrational Coupling. It has been shown that projection of the eigenvector of a vibrational mode 

onto the eigenvector corresponding to the direction along the reaction path is related to the coupling of 

that vibrational mode with the reaction coordinate (Waite and Miller 1981; Rice, Grosh, and Thompson 

1995). Waite and Miller showed that the unimolecular decay rates of the Henon-Heiles model behave 

statistically for all energies, even though this system has quasiperiodic classical motion at low energies, 

conditions under which mode specificity might be expected (Waite and Miller 1981). They suggested that 

the statistical behavior was due to coupling of the intramolecular motions of the model with the 

dissociative reaction coordinates for the system, since there was some degree of projection of all of the 

vibrational modes onto the reaction coordinates for the Henon-Heiles model. In other words, there were 

no vibrational modes in which energy could be trapped. To further investigate the role of vibrational 

coupling with the reaction coordinate, they modified the Henon-Heiles potential such that vibrational 

modes exist that do not project onto the reaction coordinate (Waite and Miller 1981). Mode specificity 

in the decomposition was then induced. Rice, Grosh, and Thompson (1995) showed that rates of 

unimolecular decomposition through competing channels were enhanced and branching ratios changed 

upon excitation of vibrational modes of a reactant that project strongly onto the reaction coordinates of 

the system (Rice, Grosh, and Thompson 1995). Our goal in this section is not to investigate mode-specific 

dynamics for this system. Rather we wish to determine which of the intramolecular motions of 

sym-triazine and the (HCN)3 cluster couple most strongly with the reaction coordinate for reactions (I) and 

(III). This will suggest mechanisms for energy transfer from excited vibrational modes to the reaction 

13 



coordinate. The studies by Waite and Miller (1981) and Rice, Grosh, and Thompson (1995) have clearly 

shown a correlation between projection of vibrational modes onto the reaction coordinate and coupling 

with the reaction coordinate. Thus, similar analyses based on projections of the vibrational modes of 

yy/w-triazine and the (HCN)3 cluster onto the reaction coordinate should verify whether the intramolecular 

motions of these molecules are coupled with the reaction path. 

As set forth in Rice, Grosh, and Thompson (1995), we calculated local normal modes (Miller, Handy, 

and Adams 1980) for points along the reaction path for reaction (HI) at the MP2/6-31G** level. The 

infinitesimal translations and rotations were projected out, leaving 3N-7 vibrational modes of the molecule 

and the eigenvector corresponding to the direction along the reaction path (Miller, Handy, and Adams 

1980). We projected the eigenvectors corresponding to the harmonic vibrational frequencies of 

equilibrium sym-triazine and the (HCN)3 cluster onto the eigenvector associated with the direction along 

the reaction path (Miller, Handy, and Adams 1980) for selected reaction coordinate values. The results 

of the projections of sym-triazine and the (HCN)3 cluster vibrational eigenvectors onto the reaction path 

eigenvectors are shown in Figures 7 and 8, respectively. Only those modes that have projections greater 

than 0.05 are shown in these figures. There are three vibrational modes of sy/n-triazine that project 

strongly all along the reaction path for reactions (I) and (III); they correspond to 1015, 1149, and 1430 

cm-1. These modes correspond to two ring symmetric breathing modes and an HCN symmetric bending 

mode, respectively. Additionally, a fourth vibrational mode (1256 cm-1) projects onto portions of the 

reaction path, but its projection is not as strong as the other vibrational modes. Its motion can best be 

described as being the most similar to the eigenvector associated with the imaginary frequency at the 

saddle point (see Figure 5). There are two vibrational modes for the (HCN)3 cluster that project strongly 

onto the reaction path; these are both symmetric ring-breathing modes (105 and 149 cm"1). Two other 

modes project less strongly onto the reaction path (740 and 3496 cm"1); both consist mainly of hydrogenic 

motions. 

It is clear that there are intramolecular motions of sy/n-triazine and the (HCN)3 cluster that couple 

strongly with the reaction coordinate, indicating the most likely routes through which reaction energy 

distributed in either of these species can transfer efficiently to the reaction coordinate for reactions (I) and 

(III). 

3.4 Energetics. The relative and absolute energies of each critical point calculated at the MP2 and 

QCISEKT) levels with the three different basis sets for sy/n-triazine, H2C2N2, the (HCN)3 cluster, HCN, 
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and the saddlepoint are listed in Table 2. (A comparison of the zero-point-energy-corrected MP2 barriers 

to formation of .5)vw-triazine from the (HCN)3 cluster and to decomposition of jy/n-triazine with QCISD(T) 

for all the basis sets is shown in Figure 9.) The MP2/6-31G** and MP2/6-311++G** calculations predict 

similar barrier heights for the formation of sym-triazine from the (HCN)3 cluster (62.2 and 62.4 kcal/mol, 

respectively). The MP2/cc-pVTZ prediction of this barrier is lower (57.4 kcal/mol). QCISD(T) energy 

refinements for the 6-31G** and 6-311++G** barriers decrease the MP2 results slightly (61.1 and 61.7 

kcal/mol, respectively). The QCISD(T) refinement of the MP2/cc-pVTZ barrier, however, increases the 

MP2 result by 0.7 kcal/mol (58.1 kcal/mol). Thermal activation barriers for this reaction have not been 

determined experimentally; thus, we cannot gauge the accuracy of these barrier heights. The only 

information about the barrier height for the formation of .sym-triazine from isolated HCN is an upper limit 

of 72 kcal/mol (Ondrey and Bersohn 1984). Our values are well under this limit. 

The zero-point-corrected MP2 barriers to decomposition of yy/w-triazine for the 6-3 IG**, 6-311++G**, 

and cc-pVTZ basis sets are 80.7, 77.7, and 79.6 kcal/mol, respectively. QCISD(T) refinements of the 

barriers for these three basis sets are 81.6, 79.0, and 81.2 kcal/mol, respectively; well below the 

experimental upper limit of 115 kcal/mol (Ondrey and Bersohn 1984). QCISD(T) energy refinements did 

not significantly change the MP2 results. Both reactions, however, showed some sensitivity to basis set 

size. 

Experimental and calculated reaction enthalpies (corrected to T=298 K) for reaction (I) are given in 

Table 3. The calculated reaction enthalpies for reaction (I) range from 27.8 to 35.5 kcal/mol, at least 18% 

lower than the experimental value of 43.2 kcal/mol (Ondrey and Bersohn 1984). The QCISD(T)//MP2/ 

cc-pVTZ value of 35.5 kcal/mol is in closest agreement with experiment. The formation enthalpies of the 

(HCN)3 cluster and HJCJNJ + HCN from 3 HCN are also shown in Table 3. 

The zero-point-corrected MP2 energies of the H2C2N2 [Figure 1(c)] plus HCN relative to isolated 

HCN are 63.8, 64.0, and 61.3 kcal/mol for the 6-31G**, 6311++G**, and cc-pVTZ basis sets, 

respectively. Corresponding zero-point-corrected QCISD(T) values are 57.4, 57.6, and 55.9 kcal/mol. 

These values are higher than the zero-point-energy-corrected barriers to concerted triple association at all 

levels for each basis set, with a difference of 6.7 kcal/mol at the highest level of theory. Figure 10 

illustrates this for the QCISD(T)/cc-pVTZ results.   Even if we assume that there are no barriers to 
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Table 3. Temperature-Corrected (T-298 K) Enthalpies (kcal/mol) 

Level of Theory Reaction Endothermicity 

jym-triazine -» 3HCN 

Experiment* 
MP2//MP2/6-31G** 
QCISD(T)//MP2/6-3 IG** 
MP2//MP2/6-311+4G** 
QaSD(T)//MP2/6311++G** 
MP2//MP2/cc-pVTZ 
QCISD(T)//MP2/cc-pVTZ 

43.2 
31.5 
33.0 
27.8 
29.5 
35.2 
35.5 

3HCN -> (HCN)3 

MP2//MP2/6-31G** 
QCISD(T)//MP2/6-31G** 
MP2//MP2/6-311++G** 
QCISEKT)//MP2/6311++G** 
MP2//MP2/cc-pVTZ 
QCISD(T)//MP2/cc-pVTZ 

-9.4 
-8.9 
-8.7 
-8.4 
-9.3 
-8.7 

3HCN -> H2C2N2 + HCN 

MP2//MP2/6-31G** 
QCISD(T)//MP2/6-31G** 
MP2//MP2/6-311++G** 
QCISD(T)//MP2/6311++G** 
MP2//MP2/cc-pVTZ 
QCISD(T)//MP2/cc-pVTZ 

62.1 
55.7 
62.5 
56.1 
59.7 
54.3 

Ondrey and Bersohn 1984. 

formation of H^N^ or the necessary HCN insertion into the H^Nj molecule to form jywz-triazine 

[reverse of reaction (II)], comparing the relative energies of the H2C2N2 + HCN minimum and the saddle 

point for reaction (III) indicates that the reaction (II) pathway is higher in energy than that of the concerted 

triple association reaction (III). Because we are interested mainly in the low-energy pathway for the 

formation/decomposition reactions of jy/w-triazine, we did not investigate this reaction path further. We 

attempted to locate additional dimer structures, but none were found. 
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These results support the experimental observations for reaction (I) (Ondrey and Bersohn 1984; 

Goates, Chu, and Flynn 1984). First, the zero-point-energy-corrected barrier for jym-triazine 

decomposition [reaction (I)] is within the experimentally determined upper limit. Secondly, the 

low-energy decomposition reaction is a concerted triple dissociation rather than a step-wise decomposition 

reaction such as reaction (II), in agreement with the photodissociation experimental results. Additionally, 

the structures of species along the reaction path for this process could explain the observed nonstatistical 

energy distribution in the bending mode over the stretches (Goates, Chu, and Flynn 1984). The saddle 

point structure for this reaction is similar to that of yym-triazine. The HCN angles in this structure are 

140°. Thus, once this barrier is overcome and the system is in the HCN region of the potential energy 

surface, the HCN angles must open up 40° to reach both the (HCN)3 cluster and HCN product values of 

180°. The large change in the HCN angle of the transition state species to the cluster/isolated HCN 

molecules could be the source of the large HCN bending excitation that was observed by Goates, Chu, 

and Flynn (1984) in their study of the product energy distributions of aym-triazine photodissociation at 

193 nm. The CN and CH bond distances, on the other hand, differ at most by 5% between the saddle 

point and cyclic (HCN)3 cluster geometries. Thus, the most significant geometric changes in these internal 

coordinates have occurred before the saddle point is reached and could explain why vibrations 

corresponding to CN and CH stretches were not excited upon decomposition. 

Our reaction path calculations indicate that the weakly bound cyclic (HCN)3 cluster is a reaction 

intermediate on the jym-triazine decomposition pathway. However, the energy available to products upon 

crossing the reaction barrier is so large that this reaction intermediate would not be long-lived and 

probably not detectable during the decomposition process. Our results clearly show that the low-energy 

path to dissociation of jym-triazine is through a concerted triple dissociation. We were unable to locate 

a saddle point for decomposition of the (HCN)3 cluster to form isolated HCN. Thus, we are assuming that 

the barrier to (HCN>j decomposition toward isolated HCN is merely the endothermicity of the cluster 

relative to isolated HCN. 

4.  CONCLUSIONS 

We have presented an ab initio study of formation and decomposition reactions of jym-triazine. Two 

decomposition pathways were examined: a concerted triple decomposition reaction 

sy/n-triazine -» 3 HCN (I) 
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and a stepwise decomposition reaction 

sym-triazine -» H2C2N2 + HCN -> 3 HCN. (II) 

Our best estimate of the energy required for reactions (I) and (II) are 81.2 and 87.0 kcal/mol [QCISD(T)// 

MP2/cc-pVTZ], respectively. These predicted energy requirements for reactions (I) and (II) are well below 

the experimentally determined upper bound (115 kcal/mol)2. 

IRC calculations starting from the transition state of reaction (I) toward isolated HCN led to a local 

minimum on the potential energy surface that corresponds to a weakly bound cyclic (HCN)} cluster. 

Thus, the reaction path connects the jym-triazine minimum with the cyclic (HCN)3 cluster, a reaction 

intermediate leading to isolated HCN. Our best estimate of its energy relative to isolated HCN is -8.9 

kcal/mol [QCISD(T)//MP2/cc-pVTZ]. The reverse of reaction (I), the association of HCN molecules to 

form sym-triazine, is therefore 

3 HCN -»(HCN)3 -» 5ym-triazine. (Ill) 

It is likely that formation of the (HCN)3 cluster is a critical step in the association reaction (III) as it 

removes significant steric hindrance to the concerted triple association of the HCN molecules to form 

sym-triazine. However, this cluster is probably very short lived upon decomposition of sym-triazine, due 

to the excess energy available to products upon crossing the saddle point for reaction (I). 

The zero-point-energy-corrected reaction barrier to triple association [reaction (III)] is lower than the 

energy needed to form the HCN + H2C2N2, the stable intermediate complex for the step-wise reaction for 

formation or decomposition of aym-triazine for all basis sets and all levels of electron correlation. Our 

best estimate of the energy difference between HCN + H2C2N2 and the barrier to triple association 

(relative to isolated HCN) is 6.7 kcal/mol [QCISD(T)//MP2/cc-pVTZ]. Any energy barrier to formation 

of H2C2N2 or insertion of a third HCN into this intermediate to form jym-triazine cannot be lower than 

the energy of this intermediate. Thus, a step-wise reaction for formation or decomposition of aym-triazine 

is eliminated as the low-energy path in favor of the concerted route. 

Critical points on the iym-triazine potential energy surface were located through MP2 geometry 

optimizations using the 6-31G**, 6-311++G**, and cc-pVTZ basis sets, and characterized through normal 
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mode analyses. Energy refinements for each point were done at the QCISD(T) level using the same three 

basis sets. It was shown that relative energy changes between the two levels of electron correlation were 

small. Structural changes for the critical points with increasing basis set were also small, and all predicted 

structures were in good agreement with experiment, where available. Because the geometries of HCN and 

sy/n-triazine are described extremely well at the MP2 level with all three basis sets, this suggests accurate 

geometries are available without requiring large basis sets. The MP2 frequencies show reasonable 

comparison with experimental values where available. Temperature-corrected (T=298 K) reaction 

enthalpies for dissociation of ayw-triazine [reaction (I)], however, were lower than experiment (Ondrey 

and Bersohn 1984) by 18%. 

IRC calculations leading from the transition state for formation/dissociation of .sym-triazine provided 

mechanistic insight into these reactions. The species along the reaction path have three-fold symmetry, 

in agreement with photodissociation experiments that clearly show concerted triple dissociation of the 

yy/w-triazine (Ondrey and Bersohn 1984). The large change in the HCN angle going from the transition 

state to the (HCN)3 cluster/HCN products could explain the experimentally observed excitation of the 

HCN bending vibration in the products of sy/n-triazine photodissociated at 193 nm (Goates, Chu, and 

Flynn 1984). The lack of excitation in the corresponding C-H and C-N bonds could be explained by the 

small changes in these geometric parameters along the reaction path from the transition state to the HCN 

products. 

Since such conceited triple association/decomposition reactions are considered to be uncommon, we 

attempted an analysis that could show why these reactions occur, using projections of the vibrational 

eigenvectors of ,sym-triazine and the (HCN)3 cluster onto the eigenvectors at various points along the 

reaction path that are associated with the direction of reaction coordinate for the concerted reactions. For 

points all along the reaction path, including the transition state, three vibrational modes of sym-triazine 

and two vibrational modes of the (HCN)3 cluster project strongly onto the reaction path. Two of the 

modes that project strongly in both ,sym-triazine and the (HCN^ cluster are symmetric ring-breathing 

motions, while the third in .sym-triazine is a C-H rock. Two other vibrations of the (HCN>3 cluster and 

a vibration in .sym-triazine also couple to portions of the reaction path, though not as strongly as the 

aforementioned breathing modes. These projections indicate that certain vibrational modes of .sym-triazine 

and the (HCN>3 cluster are coupled to the reaction coordinate, providing mechanisms through which 

reaction energy of the two species can transfer into the reaction path, resulting in the concerted 

association/decomposition reactions. The existence of the cyclic (HCN)3 cluster in the reaction coordinate 

reduces the gross entropic effects that would hinder the concerted triple association reaction, putting the 

system in a preferential arrangement for concerted association if reaction energy is appropriately 

distributed among this cluster. 
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